Categories


Tags


人工智能什么时候才能全面影响搜索算法?

过去一两年,人工智能是最火的并且快速进入实用的技术。以前写过人工智能将彻底改变SEO,也介绍过人工智能在搜索算法中的实际应用,但需要说明的是,到目前为止,人工智能在搜索算法中的应用并不广泛。影响人工智能在搜索算法中大范围使用的最主要因素可能是,搜索引擎工程师不知道人工智能系统到底是怎么做出判断的,然后又导致另一个重要问题:很难debug。

人工智能是个黑盒子

用不太严格但容易理解的方式说,深度学习就是给现有数据(大量数据)打标签,然后系统自己总结数据和结果(也就是所打的标签)之间的关系,面对新数据时,就能依据自己总结的规律给出判断。对围棋来说,无论历史棋局还是自我对弈,AlphaGo知道盘面,也知道结局(也是一种标签),系统就会总结规律,面对新盘面时判断赢棋的概率。但AI系统找到的是数据的哪些特征,与结果之间是怎样的关系,连创造AI的工程师也不知道。

所以,现在的人工智能系统是个黑盒子。我们知道AI判断的正确率高,但不知道为什么,不知道是怎么判断的。

搜索算法中的AI也是如此。百度搜索工程师的说法很少见到,只是知道百度现在All In AI了。Google工程师明确表示过,他们对RankBrain到底是怎么工作的也不太清楚。在这种情况下,在算法中大量使用人工智能就比较麻烦了,一旦出现异常结果,不知道是什么原因,也无法debug。

写这篇帖子是因为前些天看到一篇纽约时报的文章“AI能学会解释它自己吗?”,非常有意思。一位心理学家Michal Kosinski把20万社交网络账号(是个约会网站)的照片及个人信息(包括很多内容,如性向)输入面部识别人工智能系统,发现人工智能在只看到照片的情况下判断性向准确率很高。人工通过照片判断一个人是否同性恋的准确率是60%,比扔硬币高一点,但人工智能判断男性是否同性恋准确率高达91%,判断女性低一些,也有83%。

从照片里是看不到音色语调、体态、日常行为、人际关系之类帮助判断的信息的。同性恋有纯相貌方面的特征吗?我个人的经验是,靠相貌判断不大靠谱。我以前认识一对男同,他们都是很man的那种,常年健身,待人彬彬有礼但绝没有女气,从外表是看不出来的。也可能是依靠某种服饰特点?表情?背景?人工智能从照片中到底看到了什么我们人类很可能忽略了的特征,或者人类根本看不到的特征,并达到91%的准确率呢?不得而知,反正只是知道AI看得挺准。

不能解释自己的AI无法被信任

这种黑箱特征有时候倒无关紧要,像是判断一下性向。有时候就不能这么草率了,比如看病。虽然AI系统诊断某些癌症的正确率已经达到人类医生的水平,但最后结论,目前还是要医生做,尤其是AI不能告诉我们它诊断的理由是什么的时候。除非以后AI能解释它为什么做出这个诊断,不然让人类100%信任AI是有比较大心理障碍的。

前几天刚刚看到新闻,新加坡政府开始测试无人驾驶公共汽车。这显然是个正确的方向,我也相信不久的将来就会成为现实。虽然自动驾驶汽车事故率比人低,理性上我们都知道其实更安全,但过马路时,停在旁边的公共汽车没有司机,我会不会有点提心吊胆,怕它突然启动?开车时扭头一看,旁边的Bus没有司机,我会不会吓一跳,下意识地离它远点?至少初期会的吧。和几个朋友聊起这个事,都是理性上相信,感性上心虚。

以前的程序是依靠确定性和因果关系运行的,比如搜索算法中哪些页面特征是排名因素,各占多少权重,这是工程师挑出来的、确定的,虽然挑的时候可能就是拍脑袋决定的,但经过监测效果、调整参数,会达到一个比较满意的平衡。人工智能系统并不依靠工程师给定的确定因果,而是更擅长于在概率和相关性中找到联系。对人来说,以概率和相关为特征的判断,经常就不好解释理由了,比如也许是看心情,也许是看好看不好看。

要求AI系统解释自己的判断,不仅是心理上的问题,也许以后会变成伦理和法律上的问题,像看病。再比如涉及用户利益的事情,像贷款,人工智能根据一大堆数据做出拒绝贷款的决定,银行却不能解释为什么拒绝,对用户该怎么交代?今年欧盟可能就要颁布法规,要求机器做出的决定必须有解释。这对Google、Facebook等全球性的企业是个压力。在很多领域,如军事、法律、金融,所有决定都是要有人来承担责任的,如果某个决定无法解释原因,恐怕也没有人敢承担这个责任。

另一个需要AI解释理由的原因是,前面提到,人工智能看的是概率和相关性,但看相关性做决定有时候会导致严重错误。纽约时报的文章举了个例子。经过数据训练的人工智能系统辅助医院急诊室分诊,总体上看效果不错,但研究人员还是不敢真的拿来实用,因为数据中的相关性可能误导人工智能做出错误判断。比如数据表明,患有肺炎的气喘病人最后病愈情况好于平均水平,这个相关性是真实存在的。如果AI系统因为这个数据就给有肺炎的气喘病人比较低的处理等级,那可能就要出事了。因为这些病人之所以最后情况良好,是因为他们一来就被给予最高等级,得到最好最快的治疗了。所以,有时候从相关性看不到真正的原因。

可解释的人工智能

X.A.I.(Explainable AI)可解释的人工智能,是刚刚兴起的一个领域,目的就是让AI对自己的判断、决定和过程做出解释。去年美国国防高级研究计划局(Darpa )推出了David Gunning博士领导的XAI计划。Google也依然是这个领域的领先者,Deep Dream好像就是这方面研究的一个副产品:

人工智能与SEO

回到搜索算法及SEO,搜索引擎之所以还无法全面应用人工智能,其中一个原因也许就是人工智能的判断没有解释、无法理解,如果算法使用目前的人工智能,一旦出现排名异常,工程师们将无法知道原因是什么,就更无法知道该怎么调整。

我想自动驾驶是最先AI实用化的领域之一,和能否解释也有一定关系。自动驾驶汽车的大部分决定是不大需要解释的,或者说解释是一目了然的,距离前车太近所以要减速或者刹车,这类判断应该不需要进一步解释理由了。

SEO们大概都有过同样的疑惑,某个竞争对手的页面看着没什么特殊的,内容不怎么样,视觉设计一般,外链普通,页面优化大家做的都一样,为什么排名就那么好呢?现在的搜索算法还可以探究原因,搜索工程师们大概有内部工具可以看到排名的合理性。如果搜索工程师看着一个挺烂的页面就是排在前面,却也不知道原因,还无从查起,他们的内心可能就焦虑了。

XAI的研究才刚刚开始,这给了SEO们最后的缓冲期。从人工智能系统在其它领域碾压人类的表现看,一旦大规模应用于搜索,作弊和黑帽SEO恐怕将成为过去,现在的常规SEO工作也许变得无足轻重,SEO们需要回到网站的本质:提供有用的信息或产品,别无他法。

来源:SEO每天一贴 Zac 昝辉


Public @ 2011-04-13 16:14:23

很多用户是闭着眼睛看网站的

,因为他们主要是通过触觉和听觉来使用网站。所以要让网站具有良好的无障碍性,以便各种用户都能够舒适地使用网站。以下是一些改善网站无障碍性的方法: 1. 使用大字体和高对比度色彩,以便用户能够更容易地读取内容。 2. 使用标题和副标题,以便用户可以轻松地浏览内容。 3. 提供键盘快捷键,以便不依赖鼠标的用户能够使用网站。 4. 避免弹出窗口和闪烁的内容,这可能对一些用户造成不适。 5. 使用 alt

Public @ 2023-06-20 05:50:15

好的面试技巧帮你成功拿下offer

在面试时,求职者要想提高面试的成功几率,就一定要注意一些细节,与HR的交流,这不仅是语言上的,还包括眼神、肢体动作、面部表情等,一定要显示出从容、稳重、自信的样子。以下根据HR网友“hr新手”的分享,给求职者们11条实用的面试技巧:1、保持情绪稳定不要轻易出现烦躁、激动、反感、高兴、不屑等负面情绪,感情化太浓厚的求职者,往往不会给面试者留下好印象。职场是高度利益化和复杂化的场所,过于感性的人在成熟

Public @ 2015-06-06 15:27:47

内容创作与人工智能

上个帖子写了,在中国做内容营销是件颇为郁闷的事,但最近版权维权方面的进展是个好消息。原创版权维护能行得通的时候,以中国人的创造力,内容营销将大有可为。但也有不好的消息。过去两年多,我写了好几篇关于人工智能与SEO的帖子:AlphaGo、深度学习与SEO人工智能将彻底改变SEO人工智能在搜索算法中的应用人工智能什么时候才能全面影响搜索算法虽然我猜想AI会彻底改变SEO,但到目前为止还没有太大的变化。

Public @ 2018-09-28 16:14:25

人工智能将彻底改变SEO

作为一个AI语言模型,我可以告诉你:人工智能已经开始改变了SEO,而且这个趋势在未来将会愈发明显。 人工智能被应用在搜索引擎算法中,使得搜索结果更精准、更符合用户意图。例如,搜索引擎会根据用户历史搜索记录和浏览行为,为用户提供更加个性化的搜索结果,这就是基于AI的推荐算法。 此外,人工智能还在图像搜索、语音搜索、自然语言处理等领域得到广泛应用。这些技术的普及,也进一步改变了SEO的规则。 S

Public @ 2023-04-03 04:00:14

更多您感兴趣的搜索

0.516385s